
1

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

AI-Driven
Development:

the new era of code

2

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The new
era of code:
rewriting the
rules of software
development​

3

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The new era of software
rethinks the fundamentals
of development

Previously, software development was largely a
manual task. Developers employed a practical and
methodical approach when writing code, relying on
their personal experience, collaboration, and tools that
provided limited automation. Over time, the industry
implemented greater automation, such as continuous
integration and continuous deployment (CI/CD)
channels, automated testing, and DevOps practices.​

However, this human-execution-centric model is
now transitioning to a new stage, marked by the
emergence of generative artificial intelligence. Unlike
previous advancements, these technologies amplify
developer capabilities, translating requirements
expressed in natural language into functional code,
generating complete functions, and designing test
cases with minimal intervention.​

This technological leap represents a true inflection
point. The new era of code is being shaped by a
profound paradigm shift, in which GenAI and other
emerging technologies redefine how software is
conceived, implemented, and evolved.​

It is estimated that GenAI could contribute between
$2.6 trillion and $4.4 trillion annually to the global
economy, and a significant portion of this impact will
come from software engineering, along with areas like
customer operations, marketing and sales, and R&D.
In fact, the global software engineering market was
valued at $65.23 billion in 2023 and is expected to
nearly double, reaching $126.54 billion by 2029, at
a compound annual growth rate (CAGR) of 11.51%. This
rapid expansion illustrates how deeply AI-based tools
and processes are revolutionizing the industry.

4

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Leveraging generative AI in just
a few key functions could generate

most of its technological impact
in corporate use cases​

Global software
engineering market size ​

(In $ millions)

2023Impact as % of functional spend​

Im
pa

ct
 in

 $
 b

ill
io

ns
​

250

500

0 40

65,230

+11.
51%

126,540

2029

Sales

Software
engineering​
(for corp. IT)​

Representing
~75% of the
total annual
impact of
generative AI

Marketing

Supply Chain

Finance
Manufacturing

Talent and
organization

Strategy

Pricing
Corporate IT

Risk and compliance

Procurement
management

Legal

Customer
operations

Product R&D

Software
engineering​
(for Product

Development)

5

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The new rules driven by automation
and AI radically transform software
development and its paradigm​

The adoption of AI in software engineering not
only improves productivity but is also modifying
the foundations of how applications are
conceived, created, tested, and deployed.
The developer’s role, project management
practices, and quality assurance practices are
being redefined under this new logic.​

At the core of this transformation is AI’s ability
to autonomously generate code. These tools
act as real-time coding assistants, analyzing
context and suggesting entire blocks of code.
This advancement does not replace the human
developer; rather, it frees them from repetitive
and low-value tasks, allowing them to focus
on higher-level problems, such as complex
algorithm design, performance optimization, or
critical error resolution.​

Another phenomenon is the new code
democratization platforms, now AI-enhanced.
These allow non-technical profiles to directly
participate in application development,
describing functionalities in natural language,
which the platform automatically translates into
functional software.​

In the DevOps process, AI improves
operational stability through proactive
supervision and safer deployments.
However, all this requires responsible
governance, capable of ensuring transparency,
avoiding bias, and maintaining human control
over automated processes.

New rules and practices guide development
with artificial intelligence​

Manual coding AI-assisted code generation​

Long manual testing cycles Automated testing
and quality controls​

Isolated development teams Cross-functional teams​

Static software requirements Adaptive, data-driven updates​

AI-driven
approach​

Traditional
approach

6

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

In parallel, the testing area, one of the classic
bottlenecks in the development cycle, has also
been transformed by tools that implement artificial
intelligence. These systems generate and execute
adaptive test cases, detecting anomalies in software
behavior with greater precision and speed than manual
techniques. Automating unit and UI tests contributes to
maintaining high-quality standards and frees resources
previously consumed by tedious tasks.​

​The influence of AI in testing extends to operations
and continuous software delivery. Currently, the
industry is actively exploring the possibility of fully
automated software development. This vision
covers the entire cycle: from requirements gathering
to implementation and maintenance (Automated
Machine Learning).

7

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Speed and accuracy in code
generation are not optional,
but the key to revolutionizing
modern development

The environment is constantly evolving and becoming
increasingly competitive, fast, and effective.
However, engineering teams still spend a huge
amount of time writing code, running tests, and
correcting errors. As applications scale, this process
becomes more complex, costly, and difficult to
maintain.​ The lack of automation can lead to longer
development cycles, increased technical debt, and

higher operational costs. In fact, it is estimated that
developers rewrite, on average, 26% of their code,
which for a medium-sized company can mean more
than 4.7 million dollars in annual costs. By contrast, it
has been shown that in projects with Proof of Concept
(PoC) supported by AI, savings of up to 40% on costs
and a 40–60% acceleration in technical decision-
making have been achieved.​

The key in modern engineering: agility and accuracy​

8

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Accelerating software delivery

By automating processes from code generation
to testing and continuous deployments, the time
required to launch new functionalities is significantly
reduced, allowing shorter delivery cycles and
greater responsiveness.​

Improving software quality
from early stages

Identifying vulnerabilities and anomalous patterns
before software enters production (DevSecOps).
This increases the robustness of the final product,
minimizes the need for post-launch corrections,
and reduces the risk of critical incidents.

Reducing development
and operations costs​

With the support of automated tools, the workload
of teams decreases, costly errors are reduced,
and infrastructure usage is optimized. This translates
into significant operational savings, especially in
large-scale projects.

Optimizing human
resource allocation

Developers can focus on more strategic and
relevant aspects, such as improving user
experience, thereby raising team productivity
and enabling better talent utilization.

Generative AI market size
in software development​

(in $ millions)

Therefore, its use becomes
a strategic priority:

2023

21.4
25.5

29.7
36.9

44.9

52.3
58.5

69.6

81.2

96.7

117.6

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

The market will
grow al the
CAGR of: 19.1%

The forecasted
market size for
2033 in USD 117.6M

Code generation
Code Optimization
Bug Detection
Testing and Quality Assurance
Other Applications

9

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Not adapting means losing
competitiveness, key talent, and
accumulating technical debt that
compromises future innovation
and sustainability​

The automation of internal processes, large-scale
personalization, or the creation of cognitive agents are
redefining the market, and companies that do not
adapt their development capabilities to this new
logic run the risk of being left out of the game.​

The problem is not only technological but also
financial, operational, and strategic. While market
leaders build smart platforms and optimize
their processes with generative AI, those
sticking to traditional models face an increasing
gap in efficiency, costs, and scalability. And this gap
continues to grow.​

And talent costs are not far behind; it's estimated
that incorporating an AI team today implies highly
competitive salaries. ML engineers in the U.S. can
reach up to $180,000 annually, while Senior Data
Scientists can reach $200,000 in large corporations.
Companies that don't integrate these profiles into
their operational architecture will depend on third
parties or see their innovation capabilities limited.​

Organizations that don’t act now will be paying
a price in productivity, relevance, talent, and
efficiency that will be increasingly difficult to justify
to their stakeholders.

The cost of not adapting:
less efficiency, talent
loss and technical debt​

10

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The real cost of not adapting

Hidden costs due to
lack of automation​

Increasing costs in
maintenance and evolution​

Budget
misalignment​

Gap in talent
and productivity​

Dependence on rigid and
poorly scalable infrastructures​

Each non-optimized AI workflow
means wasted human time. For
example, a single AI model that
automates a repetitive workflow

can save thousands of hours
per year. Not applying it means

recurrently incurring this
operational cost.​

While traditional software
requires 15–25% annual

maintenance, properly designed
AI systems allow redistributing
that effort through continuous

learning and automatic
optimization. Without AI,
maintenance complexity,

costs, and human dependency
continue to grow.​

Maintaining a traditional
strategy implies wasting 30–
50% of the budget on tasks
that AI can partially automate

(such as data preparation, testing,
or refactoring). Conversely,

adopting AI drastically reduces
incremental development costs

and accelerates return
on investment.​

Developers are migrating to
environments that integrate

AI as part of the development
cycle. Not offering these tools

directly impacts the attraction,
retention, and performance of

technical teams.

Training AI models may
require between $10,000

and $100,000 monthly
in computing resources

depending on the scale. But
not investing in this infrastructure

means lacking the capability to
evolve smart products or respond

to the market in real time.​

11

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Augmented engineering redefines
development by integrating reliable AI,
enhancing decision-making, speed,
quality, and adaptability at scale

The concept of Augmented Engineering
represents a structural transformation in
how we conceive processes and deploy
technological solutions. Integrating artificial
intelligence, Machine Learning, augmented
reality (AR), and generative tools at the core of
practice, enhancing human capabilities to tackle
the technical and organizational complexity
of the digital age.​

In the field of software development, this
evolution is especially significant. The
emergence of generative AI has triggered
an acceleration in development cycles by
reducing the time required for tasks that
have historically required intense human effort,
from writing code to debugging, testing, or
deployment. However, this transformation
cannot be limited solely to the adoption
of coding assistants. The true potential of

augmented engineering lies in a comprehensive
approach where artificial intelligence acts as
a cognitive co-collaborator in all stages of the
software lifecycle.​

This is based on the symbiosis between the
developer's knowledge and the analytical,
generative, and predictive capabilities of AI
systems. Instead of replacing the professional,
AI amplifies human capabilities by correcting
errors proactively, suggesting structural
improvements, and accelerating automated
tests. It is intelligence that, when well
integrated, does not interrupt creative
flow but rather enhances it.​

According to a study, by 2028, 75% of
business developers will use AI-based
coding assistants, compared to less than 10%

in 2023. Moreover, it's estimated that 80% of
software lifecycle activities will involve code
generation through GenAI by 2025, increasing
productivity by up to 75% in specific use cases.​

However, the path to augmented engineering
is not free of challenges. Unlike other
more exploratory or tolerant technological
environments, software development demands
levels of accuracy, structural validation, and
regulatory compliance that generative models
cannot fully assume on their own. This
implies a technological and organizational
architecture capable of supporting human-
machine collaboration, with intelligent
orchestration layers, automation platforms,
scalable Cloud environments, observation tools,
autonomous security tools, domain-specific
models, and continuous feedback mechanisms.​

Foundations of change:
AI and augmented engineering​

AI-Augmented
Software

Engineering
Market Size ​

(in $ Million)

2025

4,670

+46.5
%

21,490

2029

12

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Augmented engineering not only automates tasks, but also amplifies human
capability for decision-making and continuous adaptation in development​

Software Development Lifecycle

1

Ideation, vision and
enhanced insights:

models like GPT, combined with
RAG, allow for the automation of

market trend analysis, identification
of opportunity areas, and synthesis

of large volumes of information
about customers, competitors, and
emerging technologies. In addition,

it can act as a creative copilot in
brainstorming sessions, suggesting

functionalities, differentiators, and
user flows based on similar use

cases, historical data, and
behavior predictions.​

Feasibility
assessment:

analyzes both technical feasibility and
project profitability. Using previous

project databases, AI estimates
resources, time, and associated risks.

It can also build ROI simulations,
model alternative scenarios, and

anticipate technological limitations.​

Requirements capture
 and prioritization:

benefits from capabilities like natural
language processing, allowing it
to extract, structure, and classify

requirements from multiple sources.
In turn, AI can maintain up-to-date

prioritization of requirements based on
sprint context, technical restrictions,

or business goals. Traceability is
enhanced with models that identify

dependencies and conflicts
between requirements, reducing

ambiguity and omissions.​

Assisted design and
evolutionary architecture:

acts as a guide proposing
architectures, design patterns,

and technical decisions based on
functional context, constraints, and

accumulated experience. It can even
generate UML diagrams, validate

structures, and simulate the impact of
modifications before implementation.

Iterative design is enriched with
explained recommendations, and its
review is aided by models capable of
detecting inconsistencies, omissions,

or standard deviations.

Implementation, augmented
and contextualized coding:

coding assistants transform daily
development. AI can suggest

complete functions, refactor obsolete
blocks, generate contextualized

code, and offer explanations. It also
adapts to the developer’s style and

preferences, accelerating onboarding
in new languages or frameworks.​

2 3 4 5

Augmented software engineering in the development lifecycle​

13

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

6

Automated testing and
failure prevention:

generates unit and functional test
cases, prioritizes testing based

on risk, and detects blind spots in
coverage. It also identifies potential
defects and vulnerabilities based on

code analysis, historical bug learning,
or static/dynamic analysis. With

this intelligent automation, testing
time is drastically reduced without

compromising quality.

Continuous deployment
and release management:

AI improves deployment through
automated generation of

environment-specific configurations
(IaC), strategy optimization for

releases, and version control. It
can suggest optimal schedules,
predict failures, and coordinate

automatic rollback in case of
anomalies. Additionally, it facilitates
documentation and traceability of

each change, maintaining governance
even in high-speed environments.​

Intelligent operations and
continuous resilience:

in production, it enables proactive
monitoring and adaptive response.
Through real-time analysis of logs,

traces, and metrics, AI detects
deviations, predicts incidents, and
suggests automatic adjustments

for resource scaling. Incident
management is partially automated
with ChatOps, while performance
optimization is achieved through

pattern and bottleneck recognition.
AI also acts as a first line of support,

proposing solutions based
on past incidents.​

Evolutionary maintenance
and continuous
improvement:

detects dead code, technical debt,
and improvement opportunities.

Through semantic analysis, it
proposes refactorings, tech
migrations, or component

restructuring. It can also answer
contextual queries about the code,

generate live documentation,
 and anticipate collateral

effects of changes.​

End of life: migration
and responsible

decommissioning:

finally, AI also contributes to system
retirement. It can generate data

migration plans across platforms,
write shutdown scripts, and generate

personalized training content for
users migrating to new systems. It
can even help manage resistance
to change by identifying patterns in

feedback and suggesting messages,
adjustments, or support materials

to ease the transition.​

7 8 9 10

Software Development Lifecycle

14

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Augmented engineering requires
AI with systemic vision, organizational
adaptability, and alignment between
people, processes, and technology

However, in critical engineering environments,
such as financial, healthcare, or public
administration, the challenges are greater.​

For AI to generate real value in these
environments, it must be endowed with extended
capabilities. First, systems must be able to
process complex inputs, such as technical
schemes, simulations, business flows, or legal
requirements, to generate software that
works and respects the domain’s structural,
regulatory, or operational constraints. This
is joined by automatic compliance validation,
incorporating sectoral rules, regulatory standards,
and audit requirements from the design phase—a
compliance by design approach.​

In turn, ensuring the traceability of each
algorithmic decision is equally essential—from
the data source to the impact of any change
in production. This is critical in regulatory
frameworks such as the EU AI Act or sector-
specific regulations like financial (Basel III,
EBA guidelines) or healthcare (HIPAA, MDR).
And even as automation grows, in these
environments significant human control
(human-in-the-loop) remains mandatory,
where systems can assist but critical decisions
must still be made by a qualified expert.​

AI-Augmented Software
Engineering (AIASE)

AIASE provides constant
support across various areas

of software development​

AI-Augmented
Software

Engineering ​

Coding

Research

Collaboration​

Testing

Version control​

15

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Its impact can be clearly
observed when broken down

into five key areas:​

Coding

AI enables assisted code
generation and review, based on

NLP and project context.

Research

AI-augmented IDEs act as knowledge
hubs, facilitating uninterrupted technical

information and documentation.​

Version control Collaboration Testing

through continuous analysis, detects
regressions, anomalies, bottlenecks,

and technical debt in real time.​

these solutions notify, document,
and share context automatically,

maintaining team coherence.​

AI can generate, prioritize, and
maintain intelligent and adaptive tests,

including self-healing cases in
response to changes.​

16

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

There are ethical, technical, and cultural challenges
that require a clear strategy for governance, scalability, and responsible adoption

Strategic challenges of AI-enabled software development​

High initial
investment:

AI solutions may
involve significant

costs for licensing,
infrastructure, and

specialized talent. This
represents a particularly
critical entry barrier for

small organizations
or those with legacy

environments.​

Privacy and data
security risks:​

AI models require
large volumes of data,

which often include
confidential information,
raising concerns about
regulatory compliance

(e.g., GDPR, CCPA)
and the protection of

sensitive data.​

Shortage of
specialized talent:​

Effective AI adoption
requires knowledge in

Machine Learning, data
engineering, MLOps,
and specific tools—

profiles that are scarce
and in high demand.​

Integration with
legacy systems:​

Legacy systems may
present technical

barriers to the
integration of modern AI
solutions, which slows

down adoption and
generates operational

frictions.​

Explainability
and trust:​

The decisions generated
by AI models are often

not interpretable by
technical teams or

stakeholders, which
hinders validation,

compliance, and cultural
adoption.​

Ethical risks and
algorithmic bias:​

AI may amplify existing
biases in data or

poorly trained models,
resulting in unfair
or discriminatory

outcomes. Furthermore,
excessive automation

may generate labor
tensions and resistance

to change.​

Loss of the
human factor:​

Intensive use of AI may
lead to technological
dependency, loss of
creative thinking, or
erosion of soft skills
such as empathy,

contextual judgment, or
user-centered design.​

Recommendation

•	 Solutions with low entry cost​
•	 Cloud subscription-based tools​
•	 Locally optimized open source

models

•	 Tools with end-to-end
encryption, access
control and auditing​

•	 Strong governance
and monitoring​

•	 Hybrid architectures
that keep data locally

•	 Upskilling through training​
•	 Collaborate with expert

consulting firms​
•	 Establish internal

communities of AI practice​

•	 Progressive integration
strategies (phased approach)​

•	 Solutions that operate on
surface layers without
modifying the core legacy​

•	 Design APIs that connect
legacy systems with
intelligent capabilities.​

•	 AI solutions that
incorporate XAI mechanisms​

•	 Traceability and
reasoning visualizations​

•	 Documentation of system
decisions for all users​

•	 Clear ethical frameworks
 to govern its use​

•	 Regular audits to assess biases
and review its social impact​

•	 Design AI as a complementary
technology​

•	 Human-machine
collaboration tools​

•	 Promote collaborative models​
•	 Evaluate the impact on the

team’s overall performance​

17

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Among these challenges, latency also
emerges as a critical barrier for
AI-powered systems in production

In the context of generative applications, latency
has emerged as a disruptive factor just as
service outages have historically been: it is the
new “downtime”. The underlying premise is
clear: if a response generated by AI doesn’t
arrive on time, it doesn’t arrive with value.
With the rise of conversational interfaces and
autonomous agents, response time is expected
to resemble that of a human conversation.
This challenge is even greater with reasoning
models, which may offer higher-quality answers
if given additional time to “think.”​

In software development, latency is the time
that passes between a developer requesting
an action and the system’s AI responding.
This delay, measured in seconds, may seem
trivial in other contexts, but in a creative flow it
represents a real interruption.​

The effect of latency is direct—an AI that responds
slowly loses value as it discourages use, disrupts
workflow, and creates a perceived experience of
being clumsy or unreliable. This phenomenon

is amplified in collaborative contexts. Delays
impact code review efficiency, the quality of agile
interactions, and team morale.​

It also introduces a new kind of technical debt.
As teams increasingly rely on AI for routine or
critical tasks, lack of immediacy degrades the
overall experience, slows long-term adoption,
and may eventually compromise operational
effectiveness. Quantitatively, it is estimated
that in optimal scenarios, low-latency AI
can improve productivity by over 20%, but
if the tool itself responds with constant delays,
those benefits are eroded until they become
counterproductive.​

As organizations integrate generative AI
systems into their development pipelines,
latency becomes a new KPI. It’s no longer
enough for the model to be accurate or versatile;
it must also be fast, stable, and consistent.
Leading companies are beginning to redesign
their architectures to meet this challenge, using
strategies such as:

An organization that succeeds in minimizing the latency
of its augmented tools gains a strategic position to lead
in speed, quality, and adaptability. Conversely, those that
tolerate slow, unresponsive, or frustrating tools risk falling
behind in the digital transformation race.​

Latency, the new “downtime” of AI

where models are partially run on local devices
to reduce round-trip time to the cloud.​

Edge
inference

Such as LLaMA 3, Mistral or other
versions optimized for fast inference.​

Lightweight
adapted models

reducing the need to process
from scratch in every interaction.​

Contextual
caching

combining context retrieval
with localized generation.​

Optimized RAG
architectures

18

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Augmented software engineering
drives a new paradigm with intelligent,
adaptable, fast, and human code

Future vision, the new DNA
of software development​

In the current decade and the ones to come, a
broad catalog of emerging technologies will reach
widespread adoption and radically transform the way
organizations design, develop, and operate software.
This will make it possible to redirect talent
toward high-impact areas such as strategic
initiatives, resolution of technical uncertainty,

or co-creation with the business, while at the
same time improving operational resilience. Testing
environments will be enriched with non-obvious
code paths, capable of detecting failures before they
escalate, and offering automated solutions. This will
lead to lower technical debt, greater robustness, and
continuous delivery aligned with business objectives. ​

19

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

From manual coding to
human-AI collaboration​

Developers no longer work
alone—thanks to coding

assistants, cognitive load
is reduced and delivery is

accelerated.​

Adaptive
codebases​

Repositories are no longer
static; they learn and evolve.
Models trained on historical
tests and deployments can
anticipate errors, suggest

refactorings, or apply
security patches.​

Democratization
of development​

AIASE promotes inclusive
access to software

development. LCNC platforms
with generative capabilities

allow users without
technical backgrounds to

contribute to the creation of
digital products.​

New roles
and skills​

Developers are taking
on the role of intelligent

systems designers. A key
competency will be knowing

how to collaborate with
autonomous systems,

validate outputs,
understand their logic,
and make ethical and

responsible decisions.​

More quality,
fewer errors​

Various tools are reducing
thousands of production

errors through testing and
automated refactoring,

thanks to augmented
software engineering.​

of developers said GitHub Copilot
helped them preserve mental

energy during repetitive tasks.​

87%
of the code suggestions from

GitHub Copilot were accepted
on average by users.​

30%
of large corporations will use at
least four LCNC tools for both
IT applications and citizen

development initiatives.​

75%
of mature AI organizations are

creating new roles related to AI,
with 87% already having AI teams.​

67%
fewer production defects and

70% less time in manual
reviews thanks to AI-assisted

code review tools.​

87%

20

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Key Trends
in AI-Driven
Development​

21

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The new software economy
is built with assisted code, LCNC,
VibeOps, autonomous agents,
 and intelligent automation​

Key trends toward the future
of software development​

As organizations face increasingly restrictive
economic environments, software development
not only persists but continues to reinvent itself.
Investments in digital transformation keep growing,
with estimates indicating that global IT spending
reached $5 trillion in 2024, with a strong focus
on agile platforms, artificial intelligence, and
productivity-boosting tools.​

In addition, the software development market is
expected to exceed $850 billion by 2028. This
demonstrates that software continues to be a
driver of digital transformation. This context is
propelling a new era of code, marked by acceleration,
human-AI collaboration, and sustainability.​

This outlook demands a rethinking of how software
is built, with what tools, by whom, and with what
impact. In this scenario, a series of key trends
are emerging that are redefining the pillars of
development: from the massive incorporation of
artificial intelligence to the democratization of code,
digital sustainability, new developer roles, and the
evolution toward platforms as an operating model.​

What was once a sequential, handcrafted, and highly
specialized process is now becoming a collaborative
practice—AI-assisted, more open, faster, and
aligned with business objectives. Understanding
these trends is not just a matter of innovation, it is a
roadmap to ensure future competitiveness.​

1. Low-Code / No-Code

2. Advanced code assistants​

4. Autonomous
maintenance agents​

5. Reverse engineering
and refactoring​

Key
Trends

Global IT spending
 in 2024​

$5.000B

Software development
market size by 2028​

$850.000B

3. Architecture automation​ 6. Vibe Coding & VibeOps​

22

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Software development is no longer reserved
exclusively for profiles with years of coding
experience. Organizations that once required
large technical teams to build even simple
applications are now transforming their
processes through Low-Code and No-Code
(LCNC) platforms. These tools allow applications
to be created through visual interfaces and
predefined components, minimizing the
need to write code and increasing the speed,
accessibility, and scalability of development.​

The incorporation of artificial intelligence
into these platforms further enhances their
capabilities—simply by describing a functionality
in natural language, the system can translate it
into an operational application. Not only does
this accelerate solution delivery, but it also
further expands the user base that can
participate in development, from business
analysts to Product Managers, who can
now create or adapt tools without constantly
depending on an engineering team.​

Both SMEs and large corporations can benefit
from these competitive advantages, as 48%
of IT leaders and C-level executives report
having accelerated application development
thanks to Low-Code, while 45% highlight its
direct impact on cost reduction. It’s no surprise,
then, that the global Low-Code platform market
was valued at $24.83 billion in 2023 and is
projected to grow at an annual rate of 22.5%
through 2030. ​

This movement is based on a digital philosophy oriented toward the democratization
of software development, removing the barrier of deep technical knowledge.

It includes both advantages and new challenges:​

Low-Code / No-Code:
the other silent driver
of change​

1 Democratization of development:
when everyone can create software​

of companies state that
Low-Code improves

productivity​

80%
state that Low-Code

reduces operating costs​

79%
state that Low-Code

improves time-to-market​

73%

Ease of use and application​

Immediate visualization of results​

Significant reduction in
development costs​

Lower maintenance burden
and higher productivity​

Dependency on vendor environments​

Loss of best design and programming
practices due to lack of experience​

Poorly scalable or low-quality solutions
without proper governance​

Customization restrictions​

Advantages Challenges​

23

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The market for AI-assisted development tools
reached $12.56 billion in 2024 and will continue
growing annually at 24.5% through 2030.​

AI-powered code assistants represent a new
layer of intelligence within the development
environment. Their logic is built on large
language models, like GPT or Codex, trained
on millions of lines of code and syntactic
patterns from multiple languages, frameworks,
and public repositories. This foundation not
only enables code generation, but also an
understanding of the functional context of
what is being programmed, helping to propose
complete solutions and detect problems before
they occur during execution.​

In this way, AI acts as a cognitive accelerator
that frees up time and mental effort, allowing
people to focus on higher-level conceptual tasks.
By reducing friction in repetitive code writing,
unit test creation, or structured refactoring, AI
assistants allow technical talent to shift more
toward design, strategy, and architecture.​

​The key to their performance lies in their ability
to interact seamlessly with the most widely
used integrated development environments,
like Visual Studio Code, IntelliJ IDEA, or cloud
platforms such as GitHub. This means the
developer doesn't need to learn a new system,
since AI is embedded directly into their usual
workflow, becoming a natural extension of their
creative process.​

More than 30% of new code in companies
like Google or Microsoft is already generated
by AI, with projections pointing to over 90%
by the end of the decade.​

The true power of these assistants lies
in their ability to understand the broader
context in which they operate. That is, they
don’t just operate on the specific line of code
being written—they learn from the project
structure, respect internal conventions, and
integrate with other ecosystem tools, ensuring
consistency and productivity throughout the
entire software lifecycle.​

Advanced code
assistants​

2 Adoption and usage frequency
of AI code assistants by developers​

Main concerns of developers about
the use of in software engineering​

use them daily​ use them weekly​ started using them
in the last 6 months​

49% 39% 58%

are concerned about
 the quality of code

generated by AI​

have concerns about
security and privacy​

fear reduced demand
for developers​

55% 48% 46%

24

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The incorporation of artificial intelligence into
architecture implies a reconfiguration of the
decision-making process, where machine
learning models, predictive analytics, and
automation allow systems to be designed
more efficiently, scale dynamically, be
maintained and documented in real time,
and anticipate failures, bottlenecks, and security
risks before deployment.​

In parallel, the automation of architectural
documentation represents another leap in
value. Through NLP, systems are capable of
extracting technical information directly from
specifications, code, or artifacts generated in
the development environment and transforming
it into structured, readable, and dynamic
documentation. This greatly facilitates knowledge
transfer, onboarding of new team members, and
technical audits in regulated environments.​

In addition to design and documentation, AI
has also begun to modify deployment and
maintenance dynamics, especially through
the automation of infrastructure provisioning,

integration of intelligent CI/CD pipelines, and
continuous system performance monitoring.
This gives rise to a new concept of architecture:
self-healing architecture, capable of detecting
anomalies, diagnosing faults, and applying
corrective measures without direct human
intervention. Likewise, self-optimizing systems
automatically adjust resources, balance
loads, and scale services based on usage
patterns, thus achieving a more efficient and
cost-sustainable architecture.​

In terms of change management, this means that
organizations must begin to integrate AI not as an
external tool, but as an internal system capability,
embedded from the initial design. However, this
new approach also entails responsibilities.
The introduction of AI into architecture requires
reviewing governance practices, incorporating
continuous model validation mechanisms,
ensuring transparency of recommendations,
and maintaining effective human oversight to
guarantee alignment with business objectives,
system security, and ethical principles.

Architecture
automation​

3 Modeling automation​

Pattern recognition​

Tools like Structurizr or ArchiMate with AI capabilities allow:​

AI analyzes previous successful architectures to:​

Detect
replicable patterns.​

 Suggest structures
for microservices,
caching, message

queues, among others

Optimize
performance and

scalability from the
initial design.​

Generate architecture diagrams
from requirements.​ Draw dependency maps.​

Propose architectural patterns
based on past success cases.​

Reduce manual effort and
 improve standardization.​

25

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Unlike traditional assistants, and driven by
automation and pattern detection, autonomous
assistants are capable of breaking down
objectives, planning tasks, writing and testing
code, and learning from the outcome without
human intervention.​

One of the most significant advances is the
shift from traditional corrective maintenance
toward a predictive and preventive model,
thanks to models that analyze historical failure
patterns, system usage, and performance.
These tools can anticipate incidents before they
occur, enabling actions that reduce downtime,
optimize resource usage, and prevent service
interruptions.​

In parallel, the ability to analyze large volumes of
logs, metrics, and telemetry in real time allows
systems to identify anomalies, classify errors
automatically, and suggest specific fixes.
These processes are becoming native domains
of AI agents capable of operating without direct
human involvement—although always under
human supervision in sensitive contexts.​

The case of SapFix, the tool developed by
Meta, represents a milestone in debugging
automation. This system generates patches
for detected bugs, validates them through
automated testing, and submits them for human
review before deployment. What’s relevant
here is not only the automation of patching,
but also the smooth integration between
AI and humans in a cycle of continuous
improvement, traceability, and validation. This
type of hybrid collaboration lays the foundation
for augmented reliability engineering, where
humans supervise and fine-tune, but don’t
intervene directly in every incident.​

Beyond debugging, this capability is reaching
a new level of automation in systems
management. These agents can apply patches,
restart services, scale resources, and run
maintenance tasks based on contextual
conditions. In cybersecurity, they can even act as
active sentinels, blocking threats in real time and
ensuring regulatory compliance without requiring
immediate intervention from the IT team.​

In the support domain, AI is optimizing the entire
incident response cycle. NLP systems can
classify tickets, prioritize them by criticality,
and generate automated responses based on
knowledge bases. This frees up support teams
and improves response times, while providing
end users with a more agile and personalized
experience.​

Moreover, advanced platforms now enable
these flows with conversational assistants and
LLM agents capable of interacting with users,
understanding informal problem descriptions,
diagnosing likely causes, and offering
automated or guided solutions. The result is
a layer of distributed intelligence that transforms
support into a conversational, comprehensive,
and adaptive process.​

Platforms like Retool with Agents or Amazon with
Kiro already show that agents can autonomously
complete more than 30% of complex tasks
without any kind of supervision from the
development team.​

Autonomous
maintenance agents​

4

identify AI-driven
testing as key to their

strategy for 2025​

75%

of respondents have
adopted AI in testing,

showing that real
adoption is still lagging​

16%

26

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Modernizing legacy software is one of the
most urgent challenges. Thousands of lines of
code remain in operation in outdated languages.​

The main catalyst for this change is the ability
of LLMs to understand and generate code in
multiple languages, as well as infer structures,
patterns, and functionalities from codebases
without documentation. These capabilities
enable new ways to approach modernization:
from automated function analysis to semantically
precise translation into modern languages,
including vulnerability detection and the
reconstruction of lost technical knowledge.​

The organizational impact of these tools is equally
significant. Instead of engaging in costly and
risky “big bang” migrations, companies can
adopt progressive modernization strategies
supported by artificial intelligence. Examples
include Japanese banks that have converted
millions of COBOL lines to Java in under a year,
or the U.S. government migrating unemployment
systems from PL/I to Python—showing this
promise is real and already underway.​

At the technical level, AI is transforming reverse
engineering in at least three dimensions.

First, through automated code understanding,
with models able to identify function purposes,
module dependencies, and complex control
structures. Second, through the intelligent
translation of code, where the focus is no longer
just syntactic conversion, but maintaining the
context and logic of the code. And third, by
strengthening the security of these systems—
detecting historical vulnerabilities and proposing
remediation aligned with modern cybersecurity
standards.​

This automation is also reaching hostile code
analysis. Models like DeGPT, designed to improve
the readability and simplification of decompiled
code, enable rapid understanding of malicious
software behavior, mapping it to frameworks
such as MITRE ATT&CK and generating
mitigation recommendations. In this field, AI not
only saves time; it represents a new defensive
layer against advanced threats.​

In the U.S., more than 80% of public IT spending
is still allocated to maintaining old systems,
which highlights the urgency of automating
modernization. Tools developed by IBM have
shown the ability to maintain more than 90%
functional coverage with minimal intervention.​

Reverse engineering and
automated refactoring​

5

of legacy system modernization
projects will incorporate AI-powered

reverse engineering by 2026.​

40%
is the accuracy with which AI identifies

the purpose of undocumented functions
in legacy C code, outperforming junior

developers by 67%.​

83%

Finds hidden vulnerabilities
and automatically suggests
solutions, reducing risks in

obsolete systems.​

Proactive security​

Modernizes old languages
like COBOL without losing
business logic, facilitating
technological migration.​

Intelligent translation​

Deciphers undocumented
code with high accuracy

and maps complex
dependencies faster

than humans.​

Automated
understanding​

AI transforms legacy
code analysis in 3 ways​

27

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

At the beginning of 2025, a concept was
introduced that quickly captured the attention of
the tech community: Vibe Coding. This trend
redefines programming as an activity guided
by the developer’s intent, who expresses in
natural language what they need, while LLM
models translate that intent into executable code.​

Shortly after, its natural evolution emerged:
VibeOps. An AI-driven operational approach

that seeks to maximize developer productivity
by eliminating operational frictions and
allowing them to focus on value creation.​

Both trends share a common vision of
transforming the development experience
into a fluid, multimodal, and AI-assisted
process, where the developer becomes an
architect of intentions rather than a performer
of mechanical tasks.

The advantage lies in accelerating the path
from idea to MVP, enabling low-cost technical
exploration, greater adaptability, and faster
pivoting, minimizing sunk costs. The goal is a
development environment where AI agents act
as omnipresent assistants—that is, they suggest
in real time, automate tedious processes, and
even generate the basic structure of complete
applications. Tools already available point in that
direction, such as environments like Replit or
the Cursor IDE with integrated generative model
support that enable this conversational flow with
the machine for code creation.​

A vibe developer can say out loud what they
need, see the code generated instantly, run it,
and if something fails simply describe the error to
the AI for it to fix. Currently, this action is limited,
but by 2030, with much more powerful and
specialized LLMs, it could become a standard
development mode for prototypes and even
for serious projects in certain circumstances.​

This requires new skills for developers, including
clear communication, sharp judgment, and
general-purpose thinking. LinkedIn’s 2025 Jobs
Report notes a 300% increase in demand for
"AI Prompt Engineer" roles, showing how vibe-
driven coding is rewriting job descriptions.​

This approach prioritizes rapid creation over premature
optimization or "code first, refine later." This trend aligns perfectly
with agile frameworks, facilitating rapid prototyping, iterative cycles,
and early concept validation. Thus, programming becomes a more
dialogical and intuitive experience, where the developer maintains
conceptual control and AI acts as a technical copilot.​

Vibe Coding & VibeOps:
vibe-driven programming​

Vibe Coding:
rom intention
to executable code​

6

28

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

VibeOps integrates intelligent
operations into the development flow,
eliminating friction and enabling
uninterrupted creativity

VibeOps emerges as a natural extension of
the vibe coding concept, introduced by Andrej
Karpathy, where the programmer guides,
refines, and supervises code generated by AI
without leaving their creative environment.
The leap proposed by VibeOps is even more
disruptive: eliminating operational frictions
(infrastructure, deployment, monitoring,
maintenance) by delegating them to intelligent
systems that respond to natural language
instructions, directly from the code editor.​

While DevOps requires teams to have specific
knowledge in tools like YAML, Terraform, or
monitoring scripts, VibeOps proposes a radically
different experience.​

This approach transforms the developer’s
relationship with the operational lifecycle of
software. It’s no longer about collaborating

with operations teams, but about integrating
operations within the development flow,
without interruptions or the need for
context switching.​

VibeOps: invisible operations,
visible productivity​

Infrastructure as code Conversational infrastructure
guided by AI​

Manual configuration Context-based
autoconfiguration​

Complex CI/CD pipelines Instant deployment
from the editor​

Monitoring scripts Automatic alerts, logs,
rollback by default​

Specialized support LLM-assisted response
in natural language​

AI-powered
VibeOps​

DevOps
traditional

29

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

This philosophy is based
on four pillars:

Conversational
infrastructure definition

​Developers describe what they need in natural
language; AI designs, configures, and implements
directly from the development environment.​

Assisted incident
response​

​In case of errors, AI analyzes logs, diagnoses problems,
and suggests solutions without the developer leaving
their main task.​

Development environment
optimization

 AI learns from user behavior to anticipate bottlenecks,
adjust resources, and personalize the experience
without direct intervention.​

Platform
continuity​​

​Allows you to move code between local, staging, or
production environments without a change in mindset
or configuration, unifying the development experience.​

30

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

VibeOps redefines success in
engineering by focusing on metrics
that enhance the developer’s
experience, efficiency, and creativity​

Implementing VibeOps requires rethinking what is
measured, how it’s measured, and why. It’s no longer
just about capturing system performance data, but
about creating visibility into the friction, blockers, and
enablers that impact the developer’s creative flow.

Unlike traditional approaches focused on system
performance metrics (uptime, errors, throughput),
VibeOps introduces a new set of indicators
centered on the developer experience.​

These metrics are the compass guiding the
implementation of VibeOps, aligning operations
with the ultimate goal: accelerating value delivery
through a frictionless development experience.​

This trend does not replace the core principles
of DevOps (collaboration, automation, continuous
delivery) but rather expands them with a critical layer:
the intentional design of the developer experience as
a primary source of efficiency and creativity.​

Reduction of context
switching time

(context switching)​

Deployment
frequency​

Average time
to create new
environments

(time to environment)​

Duration of
creative flow state​

Cycle time from
idea to production​

31

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Impact of AI
on software
consulting:
the future of
engineering
firms

32

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Generative AI is revolutionizing software
development, redefining the role of the
developer as a code coordinator and evaluator

The impact being experienced by consulting
firms driven by Gen AI and automation involves
changes that are both strategic and operational.
The delivery of one-off projects is being replaced
by models of strategic, active, and continuous
partners, capable of anticipating and
adapting to the pace of innovation.​

At the internal organizational level, the way
software is conceived, developed, tested, and
maintained is changing drastically, marked by
advanced automation, a significant increase
in productivity, and the consolidation of new
collaborative frameworks.​

This shift has led to the emergence of new
professional trajectories. The role of the
developer is transitioning from code writer to
reviewer and validator of results generated by AI.
As LLMs gain precision and reliability, this profile
evolves into that of a development orchestrator,
responsible for supervising, adjusting, and
ensuring the quality of automated outputs.

In parallel, key debates are opening up about
the future of work, the ethics of integrating
AI, and the role of consulting in a technological
ecosystem dominated by intelligent platforms
and autonomous solutions.​

Moreover, the unpredictable nature of this
technology entails the emergence of new
specialized roles. It is no longer enough to
master traditional programming languages;
professionals are now expected to be able
to select, manage, and integrate multiple AI
models into existing systems.​

In addition, continuous learning and constant
upskilling are becoming imperative.
Organizations must promote tailored training
programs that include both technical skills and
soft skills, such as effective communication and
project management.

The transformation of consulting firms
in the era of intelligent code​

Finally, beyond enhancing individual
productivity, there is an opportunity to
transform the collaborative development
of software. When integrated into
frameworks like Agile or DevOps, it
optimizes workflows, anticipates failures,
and strengthens coordination. Automation
of testing, deployment, and planning
relieves operational load, but it will require
reinforced traceability, validation, and
ethical oversight to guarantee trust.​

Consulting clients want
AI-powered services​

expect consulting services
to incorporate AI to improve
productivity and quality​

say they are actively seeking
services that incorporate AI
and technological assets​

89%

86%

33

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Generative AI is driving software consultancies to reinvent processes,
adopt new skills, and offer outcome-based services

Internal organization is not the only thing being
transformed by artificial intelligence. Current business
models must undergo structural changes and shift
towards higher value-added schemes, where the
focus is placed on the strategic and operational impact
their services generate for the client.​

Today, advanced tools such as automatic code
generators (GitHub Copilot, Codeium, among others)
are being integrated into workflows, allowing for faster
delivery without compromising quality. But the shift
goes further, as providers are beginning to position
themselves as capacity providers, offering specialized

services such as the personalization of AI models
according to the client's context, quality audits of
automatically generated code, or consulting for the
integration of artificial intelligence into existing
digital products.​

This transformation is accompanied by greater
emphasis on the creation of reusable intellectual
property (IP) assets, such as specialized frameworks,
knowledge libraries, models trained for specific
industries, or preconfigured solutions ready to
adapt—thus increasing delivered value and reducing
dependency on developments from scratch.​

In addition, new monetization schemes more aligned with
client outcomes are emerging. It is anticipated that, thanks
to AI's ability to connect fragmented data and make the
value generated end-to-end more visible, pricing models
will tend to be outcome-based, where the client will pay
for the achieved KPIs or obtained benefits.​

This movement is also part of a transition from the
traditional Software as a Service (SaaS) model towards
an Artificial Intelligence as a Service (AIaaS) model,
where intelligent agents provide continuous
support, learn from usage, and evolve without
the need for manual updates.​

Altogether, these changes require rethinking not only
how software is developed, but also how value is
captured and delivered. Thus, by becoming strategic
partners, it will be necessary to engage in four key
areas: decision-making with AI, automation of internal
tasks for greater scalability, responsible adoption of
technologies through ethics and compliance, and
the formation of multidisciplinary teams that integrate
business, data, and technology capabilities. ​

Impact of the new era of AI-driven code and augmented
engineering across different areas of the organization​

Organization, team, and new roles​ New practices and methodology​ Tools and architecture​ Solution offerings​ Productivity and performance​

34

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Intelligent collaboration drives new
strategic and technical roles, boosting
productivity, quality, and innovation

The application and implementation of artificial
intelligence is comprehensively reshaping the
experience of software developers—from how
software is written to how it is conceived, built,
validated, and delivered. This transformation
involves a rethinking of the workflow, team roles,
and collaboration between different areas. As
a result, the developer becomes a capacity
orchestrator, combining AI resources with
human knowledge to build solutions faster and
with greater technical coherence.​

AI is also playing an active role in the definition
of user stories, acceptance criteria, and
functional requirements, enabling development
teams to convey this information more clearly to
business analysts and stakeholders.​

In terms of interface design, AI can define base
structures for pages, navigation flows, and
functional components. From these structures,
designers step in to shape the interactive layers
and more complex user experiences, ensuring
intuitive navigation centered on the end user.​

Moreover, it is paving the way for true continuous
delivery. Agile teams can use it to generate large
volumes of code, write pull requests (PRs), and
maintain a steady flow of them. This accelerates
time-to-market and turns the development
cycle into a much more fluid process, reducing
wait times and task dependencies​

This impact generated by AI, along with its
democratization and professionalization,
extends beyond pure software development.
The new collaborative model also opens
the door to emerging professional career
paths, such as Prompt Engineer, AI Trainer,
Data Steward, or Platform Engineer, among
many others. Many of these profiles are being
formalized by IT consultancies and other
specialized companies leading the deployment
of advanced solutions and needing to ensure
the proper integration between human
capabilities and artificial intelligence.​

That is why adaptability, continuous learning
ability, and interdisciplinary competencies
are increasingly valued. Companies that
invest in hybrid teams will tend to innovate
faster, reduce errors, and attract next-generation
talent interested in working with cutting-edge
technologies.

Human–machine collaboration that
redefines the role of the developer​

The emergence of collaboration
as a turning point​

35

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Prompt
Engineer​

Specialist in designing
instructions for generative
models, tailoring their responses
to specific contexts. Accelerates
prototype creation and ensures
useful and controlled results.​

AI Software
Architect​

Orchestrates the ecosystem
required to bring AI into
production, aligning data
science, business, and
regulation. Key to scaling
projects with structural
guarantees.​

MLOps
Engineer

Automates and manages the AI
lifecycle, ensuring performance,
traceability, and compliance.
Acts as the bridge between
data science, engineering,
and operations.​

AI Ethicist
& Risk Analyst​

Assess social impacts, biases,
and regulatory risks of AI,
defining ethical and governance
frameworks for responsible and
compliant development.​

Data Steward
& AI Trainer​

The former ensures data quality
and governance; the latter trains
and fine-tunes models to ensure
their responses are relevant,
ethical, and adapted to
real-world context.​

The new era of code is redefining teams and consulting,
shifting from execution to strategy, automation, and innovation

36

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The staff augmentation model, based on increasing
the number of external developers or analysts to
cover demand peaks or compensate for skill gaps,
is being replaced by an approach focused on
capability augmentation. Instead of adding people,
organizations seek to multiply their effective
capacity through the strategic use of, for
example, AI tools, process automation, intelligent
copilots, specialized frameworks, and assisted
development platforms. In this way, development
teams become smaller, but more specialized,
capable of generating greater value.​

This shift toward capability augmentation has
direct effects on the talent profiles organizations
demand. Tasks that traditionally fell to junior roles—

such as writing basic functions, running unit tests,
researching documentation, or analyzing data—are
now being handled by intelligent systems, creating
structural pressure on entry-level positions. From
now on, even junior profiles are expected to
understand how to collaborate with AI and how to
generate value from the very beginning.​

Simultaneously, new hybrid profiles are gaining
prominence—professionals capable of interpreting
AI-generated outputs, refining prompts for better
results, making data-driven decisions, and providing
critical insight into AI proposals will lead to more
specialized teams, where the operational layer will be
automated and the consultative and strategic layer
will be strengthened.

From staff augmentation
to capability augmentation
and new pressures​

37

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

With LCNC, citizen developers
emerge, opening up software
development to non-technical profiles

The rise of LCNC platforms has driven the
emergence of the citizen developer. These are
professionals without technical backgrounds
who, thanks to these tools, create functional
applications to solve business needs with
greater autonomy and speed.​

Companies are investing in these new
professionals in search of benefits that are
already tangible. Citizen developers have
reduced application delivery times by up
to 70% and development costs by 50%.​

Moreover, it is estimated that 30% of
automation applications with generative
AI will be created by citizen developers
in 2025. Therefore, it is expected that, along
with professional developers, they will form an
agile ecosystem where business knowledge
is combined with technical robustness. All of
this, framed within good governance, will guide
citizen developers and provide support for
innovation while minimizing the potential
risks of implementation.​

They are distinguished by a set of
characteristics that enable them to create
applications without being programming experts:​

•	 They do not require advanced technical
knowledge: they rely on low or No-Code
platforms with intuitive graphical interfaces
to build applications, instead of writing
complex code.​

•	 Focus on solving business problems:
they are professionals from other functional
areas who identify concrete needs in their
daily processes.​

•	 Deep business knowledge: unlike
traditional developers, citizen developers
understand firsthand the processes and
objectives of their department, allowing
them to perfectly align the tech solution
with real operational needs.​

•	 Multidisciplinary collaboration: citizen
developers tend to work collaboratively,
acting as a bridge between the business
area and the technical area.

The new figure of the citizen developer​

Citizen developer
workflow model​

Business teams identify needs​

Refine and scale​

Citizen Developers build prototypes​

Prototypes tested in
real-world scenarios​

Review by professional
developers and IT​

of companies use platforms,
tools, or Low-Code features

in the development
process.​

say that Low-Code
enables more people to

participate in the application
development process.​

believe that Low-Code
is the only option for

programming in the future.​

98% 84% 75%

38

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

A new approach emerges: fewer lines,
greater impact — driving fast, collaborative
development with tangible results

Strategic relevance of
citizen development​

A new vision with fewer
lines and more impact​

By enabling more people to contribute to solution creation,​ citizen
development democratizes innovation within the company.​

LCNC platforms minimize the need for complex developments,​
which lowers IT costs and speeds up application delivery times.​

These employees tend to be more engaged and motivated, as they​
participate directly in the creation of tools that​ facilitate their work.​

By delegating to business areas, the creation of simple
applications​ or automation of specific tasks is enabled.​

Acceleration of
digital transformation​

Reduces costs
and time​

Improves
productivity​

Relieves the it
department’s
burden​

From this movement, the philosophy of fewer
lines, more impact is gaining momentum.
Seeking to achieve greater business results
by writing the least amount of code possible—
something LCNC platforms already make
possible—modern tools allow a user to create
through predefined components and visual
flows, drastically reducing the amount of hand-
written code.​

In practical terms, it means that a person can
build a useful application with just a few clicks
and configurations, in significantly less time than
with a traditional language. This efficiency can
result in solutions deployed in days or weeks
instead of months and tailored exactly to the
identified need. Moreover, this paradigm not only
accelerates development, but can also reduce
errors, since less written code often means
fewer bugs, and facilitates maintenance.
Updates are made by adjusting parameters or
replacing visual components, instead of having
to refactor large sections of source code.​

​Thanks to Low-Code/No-Code platforms,
organizations can achieve great results in
digitization and automation with very little
programming effort, empowering all employees
to contribute to innovation.

39

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

New practices with AI and automation
optimize development and delivery,
boosting efficiency, quality, and rapid
response to change​

Beyond their role as point tools, artificial intelligence
is becoming consolidated as an operational layer
that spans every link in the software development
chain. From the initial writing of code to its
deployment in production and continuous evolution,
it acts as an engine that optimizes flows, anticipates
failures, and adapts solutions to the changing context.​

Its value lies not only in accelerating individual tasks,
but in enabling a more cohesive and intelligent
ecosystem, where testing is automatically adjusted
to user behavior, project management becomes
predictive, and customer experience is personalized
in real time. In this sense, it becomes an

infrastructure that makes possible a new way of
building, deploying, and maintaining software in
increasingly complex and dynamic environments.​

In fact, its integration is decisively accelerating
software delivery. By automating a large number
of tasks, its use reduces delivery times, improves
software quality, and allows errors to be detected
before they become critical issues, turning the
entire process into a proactive, reviewable,
and efficient agile development, which is key
to sustaining continuous and ever-changing
development cycles.

AI and automation redefine software
development and delivery practices​

40

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Reimagining the software product development
lifecycle — from fragmented to accelerated with AI

Current software product development lifecycle​ AI-enabled software product development lifecycle​

Discover Validate Build​ Launch and scale​ Discover, validate,
and experiment​

Build, launch,
and scale​

Integrated customer data that enables
insights across all horizons​

Dispersed and isolated data
across research, usage, and

success​

Fragmented ownership
across product, marketing,
engineering, and outcomes​

Long timelines and delays
between phases​

Integrated real-time data
that generates insights​

Aligned ownership, product
managers as “mini CEOs”​

Radically compressed
cycles, faster time to market​

41

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Integrating security from the start with Shift
Left Testing reduces risks, lowers costs,
and strengthens trust in the software​

As a result of the evolution of software engineering
driven by AI and automation, testing and security
processes have undergone a significant
transformation. In particular, organizations
are adopting the "shift-left" approach in their
DevSecOps practices, moving security tests
and validations to the earliest stages of the
development lifecycle. Instead of leaving these
tasks for the end, they are now integrated from the
design and initial coding stages.​

This strategic shift results in safer products,
as it enables the detection and correction
of vulnerabilities from the start, significantly
reducing risks and strengthening software
integrity. In addition, it involves considerable
cost savings, since addressing security issues
in later stages often requires costly rewrites
and exposes organizations to sanctions from
security breaches. At the same time, it raises
the technical level of the team by involving
developers in early stages.​

Another impact is the promotion of
cross-functional collaboration. "Shift left"
encourages direct cooperation between
developers and security specialists,
facilitating more efficient communication,
a smoother exchange of knowledge, and a
shared understanding of the process.

Large companies, such as Google or Microsoft,
are already using AI-powered tools to automate
product testing, automatically generating test
cases, prioritizing executions, and anticipating
defects. Tools have also been developed that
use Machine Learning algorithms to perform
fuzzing tests, identifying vulnerabilities with
greater precision and efficiency than
traditional methods.​

Finally, some streaming platforms already
use AI systems to monitor their streaming
infrastructure in real time, detecting
anomalies, anticipating interruptions, and thus
ensuring a stable and reliable user experience.

Shift left testing in security:
integrating controls from the start​

Shift left testing for high
quality with delivery speed​

Shift left
testing

Release

Testing

Plan

Code

Build

Deploy

Operate

Monitor

42

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Tools like Copilot and GPT are leading the
assisted coding revolution, transforming
both software productivity and quality​

The generative AI market for software
development, valued at $21.4 million in 2023, is
expected to reach $117.6 million by 2033, with
an annual growth rate of 19.1%. The emergence
of assisted code generation tools powered
by AI—such as GitHub Copilot, GPT, Tabnine,
CodeWhisperer, or Replit—has been one of the
most disruptive innovations in this sector,
enabling the translation of natural language
instructions into functional code.​ Most of
these solutions, which combine natural language
processing with deep learning, not only generate
on- demand code, but also actively scan the
development environment, detect errors, and
suggest improvements, learning from the
team's context as they are used. In doing so,
development cycles are shortened, code quality
improves, delivery speeds up, and the team's
creative capacity expands.

These tools have been shown to accelerate
task completion by up to 56%. Developers
who use them report higher levels of
satisfaction: between 60% and 75% say they
feel less frustrated, more focused, and more
satisfied with their daily work. The impact
is especially notable in mature organizations
and among senior developers, who better
understand how to leverage AI as an extension
of their capabilities.​

The benefit is not limited to immediate
performance: 73% of developers who use
GitHub Copilot say it helps them stay in a
state of flow, while 87% say it helps them
conserve mental effort during repetitive tasks.

Enabling tools and technologies
in software engineering​

Tools

Faster development speed:
allowing teams to focus on new features.​

Cleaner and more readable code:
with fewer errors and greater maintainability.​

Automation of repetitive tasks:
freeing up time to tackle complex challenges.​

Accelerated learning for junior
developers, thanks to real-time
explanations and suggestions.​

of developers already use AI
tools in their workflow​

75%

43

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The transformation of software engineering
in the era of artificial intelligence is the result
of an ecosystem of enabling technologies,
intelligent tools, and flexible architectures that
act as catalysts for a new way of conceiving,
building, and maintaining digital solutions. This

technological environment is driving the rise of
AI-assisted development and the expansion
of LCNC platforms, making possible a faster,
more inclusive, and personalization-
centered software engineering.​

Tools applied throughout
the entire software
development lifecycle​

Each phase of the software cycle
benefits from augmented assistance,
reducing errors and accelerating
delivery with precision

44

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Use of tools in each stage of the
 software development lifecycle

Planning ​

AI UI Design Tool​

Design​

AI UI Design Tool​

Coding​

AI-Assisted Code​
AI Pair Programmer​

Testing​

AI Pair Programmer​

Tools

Code Review​

AI-Reviewed Code​
AI-Powered Documentation

Platform​

Pre-Release​

AI-Powered Documentation
Platform​

AI for Creative Tasks

Post-Deployment​

AI for Creative Tasks​

•	 Sketches interfaces​

•	 Detects requirements from
the beginning​

•	 Improves coordination
among teams

•	 Generates layouts​

•	 Enhances UX​

•	 Automates usability testing​

•	 Reduces manual flows

•	 Provides real-time code
suggestions​

•	 Enables automatic
refactoring​

•	 Automates tasks

•	 Proposes tests​

•	 Detects bugs​

•	 Cleans up code in context​

•	 Optimizes validations

•	 Audits code in real time​

•	 Detects errors and
vulnerabilities​

•	 Generates automated
technical documentation

•	 Documents code and
changes​

•	 Keeps it adapted and up to
date​

•	 Facilitates handover and
version control

•	 Automates generation of
visual content​

•	 Personalizes digital
experiences​

•	 Maintains consistency​

45

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The support architecture behind the enabling
technologies and AI tools in the software
development lifecycle and augmented
engineering is a complex and modular
framework that integrates platforms,
services, protocols, and automation layers.

This architecture enables AI solutions to be
scalable, secure, collaborative, and adaptable
to different development stages and needs.
Moreover, its design aims to facilitate joint
work between humans and machines, from
ideation to continuous maintenance. ​

Support architecture in augmented
software engineering: an intelligent
and modular infrastructure​

A modular and intelligent architecture
turns every tool into a smart ally
and every workflow into an
opportunity for optimization​

46

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Characteristics of the support architecture​ Typical components of the AIASE stack​

Its strategic
and operational
impact​

Modularity and reusability:

 this architecture is based on decoupled
components that can adapt to the needs of each
team, product, or client. This allows agility to be
maintained even in complex environments and

facilitates constant evolution.

Scalability and flexibility:

designed to grow with the project, it adapts to
large or small teams, simple or multi-level projects,

cloud, on-prem, or hybrid environments.​

Embedded intelligence:

AI does not operate as an external layer, but
acts as an integral part of the flow with copilots
assisting in the IDE, recommendation engines,

systems that automatically adjust pipelines, and
models that learn from team behavior.​

Seamless integration:

various platforms allow connection, automation,
and optimization without interruptions.

Interoperability between systems is a technical
priority that defines the developer experience and

operational robustness.

AI/ML Modules

Flow Orchestrators

Smart IDE

Observability Platforms

IaC Controllers

code generation, refactoring,
error detection, failure prediction.​

connect development, testing,
deployment, and monitoring.

code assistants, contextual
prompts, productivity metrics.​

continuous monitoring of DevEx
and software performance.

infrastructure defined by
code using natural language.​

A well-designed support architecture is not visible to the end user, but
it radically determines the success of development teams. Its impact
is reflected in shorter development cycles and faster deliveries,
the reduction of manual errors and increased reliability, higher
developer satisfaction (DevEx) and in the sector’s growing innovation.​

47

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The IT offering is being transformed
by AI, positioning consulting firms
as key agents of innovation, efficiency,
and continuous support​​

As these technologies become more accessible
and complex, it becomes clear that a real
challenge lies in choosing the right stack,
governing data, adapting architecture,
developing internal talent, and aligning it all
with business goals. At this point of convergence
between vision and execution, between
architecture and culture, the role of consulting
firms becomes crucial.​

From the initial design and implementation
of modern architectures (Cloud, hybrid,
microservices, DevSecOps, among others)
to the integration of AI, automation, or LCNC
platforms, the involvement of IT consulting firms
enables maximum ROI from these technologies,
accelerating delivery cycles and mitigating
operational and regulatory risks.​

​Particularly in environments where AIASE tools
are implemented, expert guidance helps solve
structural challenges that span the lifecycle
of models (versioning, retraining, updates), the
selection of open or closed source technologies
depending on the use case and regulatory
context. Moreover, these firms play a key role in
ensuring traceability, interoperability between
legacy and modern systems, and in establishing
secure testing environments before scaling
solutions to production.​

From now on, their value proposition no longer
revolves around custom development or
one-off outsourcing, but is structured as
a comprehensive, modular, and ongoing
offering, capable of responding to the multiple
technical, cultural, and strategic challenges faced
by organizations competing in the digital economy.​

Evolution of it consulting solutions in the
new era of augmented software engineering​

Strategic intervention areas in digital
transformation processes​

They audit existing systems, assess digital
maturity, and define roadmaps aligned with

business objectives.​

Technological Diagnosis
and Strategic Planning

They deploy customized AI solutions,
implement MLOps pipelines, and boost the
software lifecycle with AIASE tools, testing,

and task automation.​

AI Adoption and Intelligent
Automation​

They orchestrate digital transformation with
agile PMOs, specialized support, and offer

services under the CaaS model.​

Project Management and
Ongoing Support​

They design modular and secure
architectures, modernize legacy systems,

and implement platforms that enhance
developer experience and technical

governance.​

Solution Architecture and
Technology Modernization

They offer technical and strategic training
programs, support cultural transformation

with sustainable models, and foster internal
talent development.​

Training, Change Management,
and Cultural Evolution​

They explore emerging technologies,
develop user-centered digital products, and

create internal capabilities through innovation
hubs and agile validation and scaling

dynamics.​

Applied Innovation and New
Business Model Design​

48

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

When AI unleashes talent,
effectiveness stops being a goal
and becomes the standard​​

Tasks such as writing new code, refactoring,
or documenting can be completed up to
twice as fast. Specifically, code documentation
and new code creation are shortened by around
50%, and code refactoring is performed in two-
thirds of the usual time.​

It’s important to note that this impact
decreases for complex tasks or when
performed by junior profiles. In such cases,
time savings may be limited. For example, some
users took 7% to 10% longer with AI tools due to
a lack of mastery in technical environments.​

Conversely, experienced developers using
AI-supported tools in complex tasks are up
to 30% more likely to complete their work on
time, thanks to the support these tools provide
in exploring new languages, frameworks, or
unfamiliar structures.​

The effectiveness of software solution delivery
depends on multiple critical factors: code
accuracy, product and functional quality,
deadline compliance, and continuous
adaptation capability.​

Previously, teams dedicated considerable
effort to repetitive tasks such as base code
writing, manual error detection, operational
management, and deployment coordination.
This not only slowed down development cycles,
but also exposed projects to human errors,
quality issues, and delivery delays.​

Today, AI integration enables teams to automate
many of these tasks, completely reshaping
this landscape. Thanks to automation, the
reinforcement of quality standards, and
optimization of end-to-end processes, developers
and engineers can operate with greater agility
and reliability. This frees up talent to focus on
higher-value tasks (such as innovation, design,
and decision-making), achieving greater impact
with less operational effort

AI-enhanced
productivity that drives
remarkable results​

Effectiveness
in delivery​

the direct impact of AI
on software engineering

productivity, expressed as
a percentage of current
annual spending in this

function​.

20-45​%

49

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The key to effective deliveries
is combining AI with rigorous testing,

security, and team adaptability​

Among the most notable advances
in terms of effectiveness are:​

Even with progress, the full integration of AI
into software development faces significant
challenges, as there are still obstacles such as
the accumulation of technical debt from code
generated without maintenance, contextual errors
from AI, or its limited capacity to understand the
particularities of each organizational environment.
Added to this are concerns about privacy, data
security, and regulatory compliance, which
remain major barriers.​

Finally, the compatibility of AI tools with existing
technological ecosystems is not always
immediate, which complicates smooth adoption.
On the other hand, trust in the quality of code
generated by AI has increased substantially,
but risks related to reliability still persist—risks
that can be mitigated with test protocols and
validation mechanisms to ensure that the
generated code meets both technical and
business standards. Only then will it be possible
to scale its benefits without compromising the
integrity of the final product.​

In conclusion, organizations that choose
to adopt augmented engineering face
challenges that go far beyond technological
deployment. They will require expert support
to select the right stack, adapt the architecture
to regulated or complex contexts, govern the
life cycle of AI models, and ensure seamless
integration with legacy systems. This is why
consultancies are shifting toward a capacity-
based approach, offering continuous, strategic,
and results-oriented support.​

​Productivity has been significantly enhanced
thanks to code copilots, automated
documentation generation, AI-assisted
refactoring tools, and intelligent testing.
However, this positive impact depends on
expert and well-contextualized use, as in
immature environments or inexperienced
hands, AI can slow down the process or
generate technical debt. Effectiveness in
delivery has also been redefined. By relieving
teams of workload, improved product quality
and increased motivation and talent retention
have been observed.​

That said, confidence in the benefits of
AIASE must be accompanied by validation
structures, quality protocols, and strategic
vision. Only organizations that approach this
transition as a process of organizational maturity
will be able to scale their capabilities without
compromising technical integrity or the value of
the final product.

Real-time automatic
error detection​

Automated test generation
that mitigates failures

before reaching production​

Optimization of code
performance to maximize

efficiency​

Strengthening of security
through proactive

identification
of vulnerabilities​

50

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The widespread adoption of AI involves
critical risks such as technological
dependency, algorithmic bias, and
a high environmental impact​ This transformation of the role of IT consultancies,

productivity, and the effectiveness of results has a
direct consequence on how the performance of
development teams is measured. Traditionally,
teams have relied on indicators such as delivery
speed, cycle time, or test coverage. However,
 in AI-assisted environments, these KPIs are
evolving to reflect new dimensions in quality,
efficiency, and impact.​

Firstly, specific metrics for AI usage are emerging,
such as model accuracy, inference latency, or
throughput in production environments, which are
key when deploying code assistants, test generators,
or automated documentation. At the same time,
intelligent code analysis tools allow teams to
measure complexity, identify problematic patterns,
and automatically assess maintainability, raising the
quality bar from early stages.​

Indicators are also expanding toward the
developer experience, such as reducing cognitive
load, improving focus, or supporting a sustained
flow state, which are critical aspects to maximize the
team’s sustainable performance.​

For their part, the concept of engineering velocity
will be redefined beyond the number of tasks
completed, with greater importance placed on the
real value delivered and how AI enhances the team’s
autonomy, collaboration, and decision-making.

Automation accelerates execution, but the real benefit
lies in how humans and intelligent agents coordinate.​

Now, both speed and the balance between speed,
quality, team well-being, and added value must be
measured. Adapting metric systems to measure
AI’s contribution is essential for those seeking
to remain competitive without compromising
technical and human sustainability in software
development. Here, consultancies play a key role
in helping organizations incorporate AI tools and
redesign their architectures, workflows, and—most
importantly—their measurement systems.​

Because without a measurement system that
correctly interprets this impact, organizations risk
being diluted between complexity and operational
inertia. Measuring well is, today more than ever, a
competitive advantage. Doing so intelligently—not
just artificial intelligence, but also organizational
intelligence—is what will make the difference
between adopting AI and truly transforming with it.

KPIs and engineering velocity
in the era of AI-assisted
development​

51

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

How consulting
firms can lead the
new era of code?

52

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Consulting firms are reinventing themselves,
combining Low-Code, technical expertise,
and continuous collaboration to lead
sustainable digital transformation​​

Far from being displaced, consulting firms are
evolving to capitalize on the potential of AI and
position themselves as trainers and strategic
partners in the implementation of these
platforms. If their value proposition previously
focused on providing technical teams and
professionals to develop custom software,
now they must take on a more mature role,
guiding, integrating, and scaling their clients'
digital development.​

The new paradigm opens up new opportunities
for those who know how to adapt with strategic
vision. The challenge is no longer to compete
in writing code, but to lead the orchestration
of agile, secure, and scalable development
within each organization.​​

How are consulting firms adapting to
this trend without becoming obsolete?​

Governance, training, and
scalability enablers​

Act as strategic allies and trainers, creating
Centers of Excellence, standardizing
methodologies, and establishing best
 practices to avoid shadow IT.​

Experts in advanced integration
and the technical last mile​

Position themselves as responsible for
ensuring quality, security, and performance,
complementing the capabilities of citizen
developers.​

Partners in continuous
evolution​

Shift from one-time software delivery to
continuous improvement cycles, establishing
long-term collaborative relationships that allow
them to support clients through their evolution.​

Experts and creators of reusable
intellectual property​

Convert their sector expertise into reusable
modules or templates, positioning themselves
as creators of intellectual property, not just
providers of on-demand code.​

Agents of change and
organizational mentors​

Lead cultural transformation by redefining
 flows, collaboration, and innovation,
reducing risks, and accelerating conscious
adoption of these technologies.​

This transformation involves five
major lines of adaptation:​

Consulting firms that understand this new logic will be able to evolve within
this growing sector paradigm. Those that persist in competing via “body
shopping” and hourly billing, on the other hand, risk being overtaken by a

more agile, decentralized, and empowered ecosystem.​

53

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

A new collaboration model, with consulting firms
as drivers of intelligent and sustainable development​

Example of the journey of continuous support and shared vision​

1 2 3 4 5 6Kickoff​

The consulting firm does
not expect detailed
requirements but rather
co- creates the vision
with the client.​

•	 Identifies
opportunities to
integrate AI​

•	 Aligns business goals
with tech strategy​

•	 Defines innovation,
productivity, and
efficiency indicators

7Design and
Architecture​

A modular, scalable,
and intelligent
architecture
is designed.​

•	 Allows for native
integration of AI,
automation, and
observability​

•	 Supports rapid
iteration and
continuous adaptation​

•	 Applies "AI by design"
principles such as
self-healing and
pattern recognition

Development
and Testing​ ​

Code assistants,
automated testing,
and intelligent validation
are incorporated​.

•	 Speeds up
development cycles
and reduces repetitive
tasks​

•	 Improves the quality
of AI-generated code
through review and
evaluation​

•	 Aligns technical logic
with business needs
through effective
prompts

Deploy/
Observability​​

Implementations
are automated and
monitored in real time.​

•	 Configures
autoscaling, proactive
monitoring, and
intelligent alerting
systems​

•	 Ensures full visibility
of developer
performance and
experience​

•	 Enables low-
risk production
experimentation

Evolution/
Feedback​

The consulting firm
remains after launch to
continuously optimize
and evolve​.

•	 Adjusts tools and
workflows based on
real usage​

•	 Optimizes the
developer experience
and reduces
interruptions​

•	 Integrates new
technologies or
needed functionalities

Culture and
Innovation​

The consulting firm
drives a culture of
augmented engineering
and continuous innovation​.

•	 Promotes AI-,
automation- and
agility-centered
practices​

•	 Trains teams on new
tools and workflows​

•	 Helps build
sustainable internal
capabilities

Business
Growth​​

The consulting firm acts
as a strategic guide for
growth and technological
efficiency.

•	 Advises on scalability,
energy efficiency, and
automation​

•	 Introduces concepts
like GreenOps,
VibeOps, and
intelligent DevEx​

•	 Helps the client
position themselves
as an industry
innovation leader

54

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

This massive adoption entails a number of risks that must be taken
into consideration and proactively managed​

This widespread adoption entails a certain number of risks that must
be taken into consideration and managed proactively

As developers rely more heavily on AI tools, there
is a danger of over- dependence. This can create

operational vulnerabilities in the event of failures
or disruptions in provider platforms. Additionally, it
may erode skills within technical teams, especially

in more junior roles, turning teams into “less
experienced professionals.

These systems learn from historical data that may
contain biases— whether in code quality, style, or

even ethical or discriminatory content—posing the
risk of reproducing errors or producing unsafe

results. Furthermore, AI “hallucinations” represent a
significant threat in software development. Indeed,

it has been documented that many suggestions are
occasionally irrelevant or incorrect.​

The most efficient code models consume
approximately 50 tons of CO2, despite being
trained on energy-optimized infrastructures.

Therefore, under increasing regulatory and
social pressure, organizations must adopt

more sustainable approaches, such as reusing
already trained models, using renewable energy,

or designing more efficient algorithms.​

Technological dependency
and skill erosion

Algorithmic bias
and hallucinations​

Sustainability and
carbon footprint​

55

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

Leading transformation requires partners
with vision, technical expertise, and strategic
insight—not vendors focused solely on execution

The transformation shaping software
development is not limited to new tools; it
implies a major structural shift redefining
the foundations of technology delivery—from
team configurations to governance mechanisms
and business relationship models. That’s why
it is not enough to merely adapt. Organizations
that aspire to lead must anticipate change more
rapidly and profoundly reconfigure how they
create. Competitive advantage will not come from
access to technology but from the ability to turn it
into a driver of sustainable, differentiating change.​

This is why having a strategic and
technological partner is a condition and
prerequisite just to compete. The new
collaboration model is not transactional, but
transformational. The role of the partner goes
beyond project execution to become an enabler
of the future—combining technological advisory,
fluid integration of new tools, and strategic vision,
while translating complexity into opportunity,
integrating capabilities the client cannot scale
internally, and supporting transformation with a
comprehensive, agile, and sustainable approach.​

Their contributions are varied: from assistance
with advanced capabilities, specialized talent,
smart methodologies, and continuous access to
global or future trends, to guidance on regulatory
and ethical frameworks. This partnership
enables process optimization, accelerated
innovation cycles, reduced operational
costs, strengthened digital resilience,
and the scaling of initiatives without
overburdening internal capabilities.​

Having a strategic partner means having a
constant guide in an environment where change
is fast and competitive pressure leaves no room
for error. Consultancies not only help implement
technologies like AI—they also act as catalysts
for innovation, anticipating market trends and
helping companies build business models
ready for the future.​

​

Take action now: lead the new era of code​

of companies struggle to find IT talent, making talent
development a priority within strategic alliances.​

74%

more operational efficiency for companies that
integrate AI through strategic partnerships.​

30%

56

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

The new era of code is led by shared vision,
continuous collaboration, and a strategy based on co-creating value

Companies that commit to this type of alliance not only execute better; they think
and decide with greater confidence and adapt more quickly.​ The benefits of having a strategic partner are multiple:

Ultimately, the new era of code not only changes the way code is created and developed — it is a strategic
opportunity for organizations to elevate their potential by relying on technology partners capable of

leading, guiding, and executing the challenges of digital transformation. ​

Resilience and
Adaptability
 to Change

Va
lu

e
ge

ne
ra

te
d​

1 2 3 4 5 6

Access to
Knowledge
and Trends

Scalability
and Sustainable

Growth

Management of
Specialized Talent

Without Internal
Saturation

Prevention
of Competitive

Stagnation

Preparation
for Future
Evolution

Enables agile responses to market
disruptions, new regulations, or

technological changes.​

Keeps the organization connected
with best practices, tools, and

learnings from multiple sectors.​

Enables scaling digital initiatives
without overloading internal

teams or assuming all
operational complexity.​

Reduces pressure on internal
resources and accelerates

delivery timelines.​

Prevents organizations from
becoming stagnant by advancing

without specialized support.​

The rapid evolution of the industry
and technologies requires dynamic

infrastructures and capabilities.​

57

AI-DRIVEN DEVELOPMENT: THE NEW ERA OF CODE

softtek.com

